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Abstract. A physically natural generalization of the notion of observable that encompasses both 
the classical and the quantum ones is derived. Based on it. the idea of the classical extension 
of a theory is developed; the states of the extended theory being the probability measures on 
the pure states of the original one. It is shown that quantum theory admiu such a classical 
extension, and that the qualifying features of quantum observables are preserved in the extended 
model. 

1. Introduction 

The question of possible relations between quantum and classical theories has stimulated 
intense research since the beginnings t of quantum mechanics. Various embeddings of 
quantum theories into classical frameworks have been proposed without being contradicted 
by empirical facts; however, the recovery of classical features is in general at the cost of 
the abandonment of other properties that appear physically sound (for a short review of 
classical representations of quantum theories see, e.g., [l]). 

In this paper we exploit a new kind ofclassical representation, or classical extension, 
of quantum theories. It carries into a classical context a surprisingly broad array of genuine 
quantum properties, suggesting that quantum theories can be viewed as specific subtheories 
of classical ones. This classical extension, called the delinearization approach in [l], rests on 
a physically natural notion of observable that encompasses both the classical and the usual 
quantum versions: thus the distinction between the classical and the quantum behaviour 
becomes coded solely in the convex structure of the set of states, which is a simplex in the 
first case, while in the second case we have the non-unique decomposition of mixtures into 
pure states. Our classical extension of a quantum theory involves the fact that starting from 
a quantum set of states, say SQ, it is always possible to construct a new simplectic (hence 
classical) structure of states, consisting of the set of the probability measures on the pure 
elements of SQ, and a mapping from it onto SQ-already studied by Misra in 1974 [2]- 
that carries the classical extension under discussion. The usual quantum observables, when 
looked upon in this classical extension, appear as fuzzy classical ones. 

If compared with the ‘phase-space representation’ of quantum theory (see [3]; for a 
concise review and recent results see [1,4]), our approach shares the idea of a classical 
structure of states, but its relationship with the original quantum set of states SQ is quite 
different, for in the phase-space representation we do not deal with a mapping of a classical 
structure of states onto SQ but rather with a mapping of SQ into the set of probability 
measures on the phase space. 
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2. Observables 

Let S be a set representing, in a given theoretical model, the set of all states of the physical 
system under consideration. We assume S to be convex, for this property translates the basic 
physical operation of forming statistical mixtures of states. If a,, 0 1 ~  E S and h E [0, I] we 
write A011 + ( 1  - .i)01z for the mixture of 011 and a2 with weights A. and 1 -A. 

The intuitive physical notion of observable, or physical quantity, consists of the 
specification of the possible outcomes (e.g., real numbers in proper units for the most 
common case) and of their probability distribution for each state of the physical system. 
To give this notion mathematical clothing, let E be a measurable space and write B( E) for 
the Boolean u-algebra of the measurable subsets of E; we shall then define an observable, 
in the given theoretical model, as an affine map of S into the convex set MT(E) of the 
probability measures on E. Typically, we shall have for E the real line B, but also E=Rn 
might occur when dealing, for instance, with vector-valued or with joint observables. All 
the singletons of E will be assumed to be measurable. 

Despite its naturalness, the above definition of observable is not frequently used in the 
literature; it was made explicit by Holevo [5] in studying probabilistic and statistical aspects 
of quantum theory, and one can find it applied in works on the phase space representation of 
quantum theories [1,3,4] or in studies on more general frameworks [5.6]. More specific and 
structured notions of observables are commonly used; as we shall see, they are encompassed 
by our definition. 

Let B : S -+ M:(E) be an observable; to any pair (01 ,X) ,a  E S,X E B ( E ) ,  B 
associates the real number ( B a ) ( X )  E [O, 11, i.e. the value the measure Bor takes at the set 
X. For fixed X E B(6) we get an affine function E8.x from S into [O,I], hence an effect. 
according to a common terminology. 

Notice that the effects, namely the affine functions from S into [O,l], form a poset under 
the pointwise ordering; if a l ,  a2 are effkts we say that a1 < az whenever al(a) < a2(01) for 
all 01 E S. We write 0s for the least effect (the null function on S) and es for the greatest 
effect (the unit function on St; we denote by [OS, es] the set of all effects on S, and notice 
from now that it is naturally endowed with a convex structure, for the convex combination 
of two effects is obviously an effect. 

The observables are thus associated to effect-valued measures on J3(8), and actually they 
can be identified as such, because any effect-valued measure on B(E)  clearly determines an 
affine map of S into M:(S) ,  hence an observable. We shall call semi-spectral resolution 
of the observable B its effect-valued measure E8 on B(E),  so transferring a terminology 
of functional analysis to the present more general context. 

Let us now list a number of familiar notions that can Se carried over by the above 
definition of observable. 

(i) Spectrum. The spectrum of the observable B : S -+ M:(E) ,  denoted SpB, can 
be defined if B(E) is generated in the-standard way by a topology on E (as in the case 
E = a). Then SpB is the smallest among the closed subsets of E such that E8,sp8 = es. 
Intuitively, the spectrum of B is the smallest subset of E that contains all possible values 
of B .  

(ii) Expectation value. Assuming for E some linear structure (take, e.g., E = B), let 
p E MT(E), and define as usual its expectation by 

. 
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provided the integral exists (which is ensured if E is bounded). If p is the image of a state 
CY E S under the observable B,  we call the quantity in (1) the expectation value (or mean 
value) of the observable B at the state a and we favour the notation E x p ( B ,  a). 

(iii) Variance. With the same assumption as in (ii), if,& E M:( E) we define its variance 
as 

V a r W  := 1 [5 - E X P ( P ) I ~  dpLO) (2) 
a 

provided the integra1,exists. Again, if p is the image of a E S under the observable B 
we call the quantity in (2) the variance of the observable B at the state CY and denote it 
Vnr(B,  CY) .  

(iv) Eigenstates and eigenvalues. An eigenstate of the observable B : S + M T ( E )  is a 
state a E S which is mapped by B into a probability measure concentrated at some A E E. 
We write SA for such a probability measure and call it a Dirac measure. .A is said to be an 
eigenvalue of B. 

(v) Sharpness. It may happen that the semi-spectral decomposition of an observable 
B involves only effects that belong to the family.a[Os, es] of the extrema1 elements of the 
convex set [OS, es] .  In this case the observable is said to be sharp. 

(vi) Uncertainry relations. We say that two observables BI : S + M:(EI), BZ : S + 
M:(&) obey, an uncertainty relation (or are complementary) if there is a positive h such 
that 

for all a’s the two variances exist at. 
(vii) Comeasurabilify. Two observables BI  : S + M:(El), BZ : S + M:(%Z) are 

called comeasurable if there exists a thud observable B : S + Mr(E1 x 82) such that 
B I  = ZI o B. BZ = nz o B. where E, x 82 is the measurable-space product of 81, tiz, 
while nl and nz are the marginal projections of M:(El x 62) onto M:(El)  and M : ( ~ z )  
respectively. Let us recall that a marginal projection, say nl, of M:(til x Ez) is defined 
by ( n ~ p ) ( X )  := p ( X  x Ez) for any p E M:(E1 x 82) and X E B(E1). The observable B 
above is called the joint observable of B I  and B2, while B a ,  CY E S, is traditionally called 
the joint probability distribution of B1 and BZ at CY. Pictorially, B, ,  Bz are comeasurable if 
there exists a B that makes commutative the diagram 

Notice that the joint observable of B1 and Bz need not be unique, as one can check with 
specific examples. This non-uniqueness is related to the known fact that two (marginal) 
distributions do not determine a unique joint distribution. 

We come now to the fact that our notion of observable accomodates both the quantum 
and the classical case. 



3332 E G Beltrameiti and S Bugajski 

The quantum cay. We have to take for S the set SQ of all density operators on a 
separable complex Hilbert space ‘H. It.is a known result (see, e.g., [8,theoremVI.261) 
that the effects on SQ. i.e. the affine functions from SQ into [0,11, are in one-to-one 
correspondence with the positive. operators of ‘H which have mean value at every state 
not bigger than one: explicitly, if P is such an operator and D E SQ, then the effect 
associated to P is the function SQ + [O. 11 defined by Tr(DP). This fact is commonly 
referred to by saying that the observables are the POv-measures. 

In the standard formulation of quantum mechanics one takes the self-adjoint operators on 
‘H as representatives of the ‘observables’. Self-adjoint operators are known to correspond to 
projection-valued measures (in short, Pv-measures) on B(R), and Pv-measures are obviously 
a sub-class of wv-measures: thus the usual ‘observables’ of quantum mechanics are 
recovered as a particular case of the observables defined more generally as the affine 
functions from SQ into M:(R). The usual ‘observables’ of quantum mechanics also admit a 
characterization in terms of the convex structure of the set [OS,, es,] of the effects on SQ: in 
fact, the effects associated to projection operators of ‘H are proved (see, e.g., [9, p 191) to be 
the extrema1 elements of the convex set [Os,, es,]. Summing up, we have that our definition 
of observables, when referred to the set SQ of quantum states, gives-among others-the 
Pov-measures on B(R); if we pick up the sharp observables, that is the ones whose effects 
are elements of .3[0,, e$,]. we get the observables of the standard formulation of quantum 
mechanics, i.e. the ones associated with self-adjoint operators. 

Let us remark that the need to go beyond self-adjoint operators was discovered in the 
early seventies in the framework of the quantum theory of open systems, and has found a 
general assessment in the so-called operational approach [9-12]. 

The classical case. Now we have to take for S the simplex M:(R) of all probability 
measures on some measurable space C2, the ‘phase space’ of the physical system under 
discussion, whose elements can be thought of as the pure states (we assume the singletons 
of Q to be measurable). Indeed, by taking S = Mr(C2) we meet the most essential property 
of classical (as opposed to quantum) physical systems: the unique decomposability of 
mixed states into pure states. According to our definition, the observables are now the 
affine mappings of hf:(Q) into M:(E). 

On the other hand, in classical statistical mechanics the physical quantities are commonly 
represented by measurable functions on 52 with values in &. Let f : C2 + E be one of 
such functions and define B,P : M:(Q) + @(E) by 

( B p ) ( X )  := v(f-’(X)) (4) 

where U E M:(Q), X E B(E), and f - ’ ( X )  is the counter-image of X under f. It is easily 
seen that B, is afIine; hence it is an observable according to the more general definition 
here proposed. We come to the conclusion that the usual observables of classical statistical 
mechanics are recovered as a particular case. 

We are going to examine in some more detail the framework based on the set of states 
M:(Q), the reason being that it is precisely a framework like this that hosts the classical 
extension of quantum mechanics to be discussed in the coming sections. It is also useful 
for a better understanding of which place, inside that framework, is occupied by the usual 
classical statistical mechanics. 

Since ax, and ax. are respectively the null and the unit functions on MT(S2), we shall 
use the simplified notation 1x0, xn] for the set of all effects on MT(C2): this avoids the 
cumbersome replacement of S by MT(S-2) in the standard notation [OS, es] .  A special role 
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is played by the subset of [xpl. xn] formed by those effects that correspond to measurable 
functions from SZ into [O, 11 according to the following prescription: given a measurable 
function g : 51 -+ [O, 11. take the function a, : M:(51) + [0,1] defined by 

and notice that it is an affine function, hence an effect. We call the effects so generated 
regular; correspondingly, we call an observable B : M:(SZ) + M:(E) regular when its 
effects EB,X are regular for every X E B(E). 

It is easily seen that the regular effects form (under pointwise ordering) a distributive 
lattice with meet and join defined by 

a, A ah = ai 

a, vah =-a, 

i(w) = min[g(w), h(o)]  

l(o) = max{g(o). h(o)] 

for all o E SZ. This distributive lattice is, however, not a Boolean algebra since the mapping 
a, H e -a, = a,-, provides only a quasi-complementation (notice that a, v ( e  -a,) can 
be less than e). The regular effects thus form a quasi-Boolean algebra. Incidentally, it 
can be mentioned that even the set [xa, xn] forms a distributive, not orthocomplemented, 
lattice [13]. 

The effects associated to the observables of the usual classical statistical mechanics are 
particular cases of regular effects. In fact the effect EB,J : M:(Q) + [0,1] associated to 
the observable Bf-as defined by (4) above-and to X E M:(E) takes the form 

where x y  is the characteristic function of Y E B(E) .  Thus E B , . ~  is the regular effect that 
corresponds to the characteristic function of the counter-image of X under f .  

Now we have the following theorem. 

Theorem 1. A regular effect is an extrema1 element of the convex set [xpl, xn] if and only 
if it comes from a characteristic function x y  for some Y E B(SZ). 

Proof. Suppose ax,. = ha + (1 - A)b for some a. b E [xa, xn], 0 < A c 1. Then, for 
any U E M:(S2), the equality v(Y) = 1 implies a(u)  = b(u) = 1, while u(Y)  = 0 implies 
U(U) = b(u) = 0. Since U admits a unique decomposition u~ = u(Y)ul + (1 - u(Y))uz,  
where U, is concentrated at Y and uz at Q\Y, we have that a(v1) = b(vl) = I while 
a(u2) = ~(UZ) = 0. Then the affinity of the effects implies U(U) = b(u) = u ( Y )  for 
every U E M:(Q), which means that a = b = axr; thus axr has to be an extreme effect. 
Conversely, let ag be a regular extreme effect generated by a measurable function g on 

.SZ according to equation (5). Assume that g is not a characteristic function: then there 
is a point WO of SZ such that E := g(w0) # 0. 1. Now define two measurable functions, 
say g' and g", on C2 which differ from g only at the point 00. where they take the values 
E',  E" E [0, 11, with E' c E < E", such that E = AE'+ (1 -A)&". So the function g would be 
decomposed into a convex combination of g' and g", which means that a, is not extreme. 
0 
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In view of the above theorem we see that classical statistical mechanics makes use of 
a limited sub-class of all possible observables: the sub-class of the regular and sharp ones. 
We have also that the regular and sharp effects form a Boolean algebra isomorphic to B(Q), 
embedded in the quasi-Boolean algebra formed by all regular effects. 

Notice that the regular effects need not exhaust, for uncountable S2, all possible 
effects [4,14]; correspondingly, the effects coming from characteristc functions need not 
exhaust a[xfi, xn]. 

Let us now come to another property which will be relevant in the remainder. 

Theorem 2 .  Any two regular observables B1 : M:(Q) + MT(E1). BZ : Mr(C2) + 
MT(E2) are comeasurable. 

Proof. Let E denote the product E1 x Ez. If XI and X, are measurable subsets of 
% I  and 32 respectively, define a real-valued measurable function on Q by f~,~~,(o) := 
(B16,)(X]) (BzS,)(Xz) and extend it over MT(Q2) by integration. In this way any measure 
v on C2 defines a function on the semi-ring of all rectangles X I  x X ,  which extends to a 
measure on E by standard procedures (see, e.g., [15, theorem 11.31). The map BI x BZ of 
Mr(S2) into M:(E) so obtained is affme, thus being an observable on M r ( Q ) .  It is easy 

0 

The generalization of classical statistical mechanics beyond the regular sharp observables 
is, to the authors’ knowledge, a rather unexplored issue, in spite of the natural way it arises. 
In sections 4 and 5 we shall see that it is the framework within which a classical extension 
of a non-classical theory occurs. One might also guess, in analogy with the role of unsharp 
observables in the quantum context, that the above generalization of classical statistical 
mechanics could be appropriate to describe classical open systems. It might even embody 
tbe description of a lack of precision in the measurement: an observable that maps Dirac 
measures of MT(S2) into diffuse measures of M:(E) is a natural tool for accounting for 
errors in measuring the corresponding physical quantity. 

Before closing this section let us emphasize a striking similarity between the cases of 
standard quantum mechanics and classical statistical mechanics: both theories work with a 
set of observables which is a narrow sample of the set of all potentially possible ones: in 
both cases the observables used are sharp. 

to check that B1 x BZ is a joint observable for regular BI and Bz. 

3. Extension of a state observable structure 

Suppose that two theoretical models are given for the description of a physical system, both 
fitting the notion of observable discussed in the previous section, Let one model be based 
on the convex set S of states, and the other on the convex set S. We say that the model 
basej on s” is an extension of the one based on S if there exists an affine surjective mapping 
R : S + S, to be called the reduction map. 

As a familiar example consider, in the framework of standard quantum mechanics, a 
compound system and a subsystem of it. We can describe the subsystem either on the 
basis of the density operators of its own Hilbert space or in terms of the density operators 
of the Hilbert space peaaining to the compound system: the second descriptive model is 
an extension of the first one and the partial trace provides the reduction map. As another 
example think of a spin-; particle and compare the description that accounts only for the 
spin coordinates with the description that also includes the position degrees of freedom: the 
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latter provides an extension of the former. Actually, the above defirjtion of model extension 
fits the noti% of ‘coarse graining’ [16]. Indeed, since R~maps S onto S, it determines a 
partition of S into equivalence classes, in the sense that all elements of 5 having the same 
image in S form equivalence class; in other words, the counter-image of R draws a 
coarse graining in S. 

Let us focus attention on the observ‘bles of the S-based model and on the ones of its 
5-based extenskn. Loosely speaking, S being ‘richer’ than S, we expect to have ‘more’ 
observables on S than on S. Actually we have !hat every observable on S has a representative 
on S through the reduction map. In fact, if E : S + M:(E) is an observable, then the map 
composition B o R : S + S + M:(X) depicted in the following diagram 

is an observable on y, to be denoted B”. The observables on 5 which are representatives 
of the ones on S share a surprisingly wide array of properties of the original observables, 
in spite of the fact that they belong to another model. We shall outline the main invariants 
between conespondmg observables. 

(1) If Boc is the probability measure on E describing the statistical dis&ibution of results 
of measurements of B at a, predicted by the S-based model, then B”E = Bo! for every Z 
in the counter-image of 01 under R; thus, the extended %ode1 based on S predicts the 
same statistical distribution of results of measurements of 5 at E. In s h o s  BS = BS for 
every B : S -+ M:(E). In particular, two corresponding observables B ,  B have the same 
spectrum, and the same eigenvalues (see (i), (iv) of section 22 in$tively, this means that 
both the original observable B on S and its representative B on S have the same set of 
possible outcomes. Moreover, if the observable B on S has expectation Exp(B,  a)  and 
variance V a r ( B ,  01) at the state oc E S (see (ii), (iii) of section 2), then 

~ x p ( B ” ,  Z) = E X ~ ( B ,  a) Var(B”, Z) = V i r ( B ,  a )  (7) 

for every Z in the counter-image of a under R. 
(2 )  Let B,, BZ be two observables on S that satisfy the uncertainty relation 

VQ?‘(Bl,U)Var(Bz,a) > h 

for all a E S the two variances exist at. In view of equation’ (7) and taking note that R 
maps 5 onto S, we have that E1 := BI o R, := BZ o R satisfy the uncertainty relation 

- 
V a r ( B ~ . z ) V Q r ( B ” z , z )  > h (8) 

for all Z E s” at which the two variances exist, with the same h. In other words, the 
uncertainty relations are invariant under the representation of the observables on S by 
observables on 9. 

(3) If two observables - BI, Bz on S - are comeasurable - (see (vii) of section 2). then also 
their representatives BI := B1 o R and-% := BZ o R on S are comeasurable. Indeed, if B-is 
a joint observable of B1 and Bz, then B := B o  R is clearly a joint observable of B1 and Bz. 
Notice, however, that this argument cannot be reversed; as we shall see in the next sections, 
it may happen that two observables on S which are not comeasurable have comeasurable 
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representatives on y. This phenomenon shows that the extension procedure pushes toward 
‘less quantal‘, or ‘more classical’ models. Indeej, we shall see that any quantum-like set S 
of states admits an extension in which the set S is of classical nature, and all observables 
on it are comeasurable. 

Let us finally remark that sharpness (see (v) of section 2) need not be preserved when 
we move from an observable B on S to its representative B” on T. Counter-examples will 
emerge in the remainder. 

E G Beltrameni and S Bugajski 

4. The canonical classical extension 

Suppose that a model based on the convex set S of states admits an extension based on the 
convex set 5. We say that the extension is classical if y is a simplex. We speak of the 
canonical classical extension if S consists of all the probability measures on the set as of 
the pure states (i.e. the extrema1 elements) of S; in other words, the S-based model admits 
the canonical classical extension if there exists an affine surjective map 

(9) 

Of course, this extension is relevant only if S does not have a classical nature on its own, 
in which case (see the description of the classical case given in section 2) the existence of 
the canonical classical extension would become tautological. 

We have attached the label M to the reduction map in (9) to remind us that this is 
the map studied by Misra [ Z ]  in the particular case in which S is the set S p  of all density 
operators on a Hilbert space. The above notion of classical extension was already advanced 
by Holevo [SI in a more specific context. 

Of course, to speak of M:(aS) we require 8.7 to be a measurable space, but this does 
not imply additional assumptions on S. In fact we can generate a Boolean u-algebra &as) 
of measurable subsets of as via the effects on S. If X is any measurable subset of [0,1] 
and a E [OS, es] is an effect on S, consider the counter-image of X under a and intersect it 
with 8s; then define B(aS) as the smallest o-algebra of subsets of as containing the family 

Rw : M:(aS) + S. 

[ a - * ( ~ )  n as : a E [os. esl, x E L?([o, 11)). (10) 

When as is equipped with this o-algebra of measurable subsets the restriction of any effect 
a : S -+ [0, I] to as is, by construction, a measurable function, say fo : as + [O, I]. 

We now come to the conditions on S that mirror the existence of the reduction map (9). 
Intuitively, a probability measure v on 8.9 corresponds to a convex combination of pure 
states; thus we are led to write 

and recognize as the key condition for the surjectivity of RM the fact that every (non-pure) 
state of S be expressible as a mixture of pure states. While the right-hand side of equation 
(11) is unambiguous when U is concentrated at a finite number of points of as, it needs 
some care in the general case. It would be natural to take it as the weak integral [17,p IO], 
i.e. as the function which attaches to any effect a on S the result of integrating fa (as defined 
above) with respect to U. But to reproduce all points of S we would need the effects to be 
uniquely defined by their restrictions on as, a condition that implies [I81 that S consists 
of countable convex combinations of its pure states (as it holds true in standard quantum 
mechanics). Indeed, we have the following theorem. 
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Theorem 3. If S is the set of all countable convex combinations of pure states then 
there exists an affine surjective map RM : MT(8.S) + S,  which becomes a oneto-one 
correspondence when restricted to the extremal elements. 

Proof. To U E M:(aS)  we associate the function G: [Os. es] --f [O, 11 defined by 

U := fo(a)du(a) - Ls 
where a E [Os, es] and fo is the reshiction of a to 3s. It is evident thatT is affine. Notice 
that to any a E S we can similarly associate the function 67 : [Os, es] + [O, 11 defined 
by =(a) := a@), for all a E [Os, es],  and a is uniquely determined by since [Os, es] is 
separating on S .  From basic theorems of functional analysis ([19, theorem 1.181 [8, theorem 
IV.ZO]) it follows that every 9 defines an element of S ,  say ay, uniquely determined by 
the equality a@,) = ?(a) for all a E [Os, es].  We have in this way generated a map 
RM : MT(aS)  + S ,  which is easily seen to be affine. Denoting by 8, the Dirac measure 
concentrated at the pure state a E as, we get, as a special case, R&,) = a. Since RM 
is affine, any U E M:(aS) consisting of a convex combination of a finite number of Dirac 
measures is mapped in the element of S formed by the same convex combination of the pure 
states associated to those D i m  measures. This conclusion holds true,even~in the case of 
countably infinite convex combinations, provided they are naturally understood as the weak 
limit of the sequence of finite convex combinations. Since M:(BS) includes all countable 
convex combinations of Dirac measures, we see that the hypothesis of the theorem ensures 
that any a E S is the image of some element of M:(aS), which implies the surjectivity 
of R M .  We have still to show that only Dirac measures are mapped into pure states by 
R M .  Let a €.as and U E R;';La) (with some abuse of notation we use the same symbol to 
denote an element of a set and the subset formed by that element alone), and notice that, 
should it be U = hul + (1 - h ) u ~  for some WI, u2 E M:(aS) and 0 < A < 1, we would 
have RM(u)  = h R ~ ( u l )  + (1 - X ) R M ( U ~ )  = a, hence R M ( U I )  = R ~ ( u 2 )  = a because a 
is pure. We claim now that, for any given a E [Os. es], the probability measnre U has to 
be concentrated at f;'(a(a)). In fact, if this were not the case U would contain a convex 
component, say U?, concentrated at f;'([O, l]\a(a)), which contradicts the abovementioned 
property RM(u2) = a, or a o R M ( ~ )  = a(a). Thus U is concentrated at f;'(a(a)), and 
since this conclusion must hold for every a E [Os, es] we conclude that U is concentrated at 

n {f;'(a(a)) : a E [OS,  SI) 
which equals a because [OS, es] separates the elements of S. Thus U = 8,. 0 

It may happen that @e convex structure of S is such that a non-pure state has a convex 
decomposition into pure states but this decomposition is non-unique: in these circumstances 
there are different convex combinations of pure states that correspond to the same element 
of S (as is well known, this is the case with S g ) ,  so the correspondence between MT(aS)  
and S becomes many-to-one. 

Summing up, we have seen that a physical theory based on the convex set S of states 
admits the canonical classical extension if, loosely speaking, the non-pure states are mixtures 
of pure states. It is worth stressing that the construction of the canonical classical extension 
is uniquely defined by the fundamental convex structure of S and does not depend on any 
particular realization we might have for S .  

Let us now shift attention to the observables of the S-based model and their 
representatives in the canonical classical extension. A first relevant fact is specified by 
the next theorem. 
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Theorem 4. If B : S + M:(E) is in observable of the original S-based model, then its 
representative E := B O  R~ : @ ( a s )  + M:(E)  is regular. 

Proof. For any X E B(E) the effect E E , ~  acts on U E M:(aS) according to 

where the Dirac measure 6. is the counter-image of a E as under RM. Upon inspection of 
equation (3, and noticing that the restriction of EB,X to 8s is a measurable function, we 
conclude that is regular. 0 

Combining the above result with the content of theorem 2 we come to the following 
corollary. 

Corollary. The representatives, in the canonical classical extension, of any two observables 
of the original S-based model are comeasurable. 

We come now to the problem of whether sharpness is preserved by the canonical classical 
extension. In view of theorem 4 we end up with regular observables on M:(aS), and we 
shall say that an observable is ,fuzzy when it is regular but non-sharp. We have now the 
following theorem. 

Theorem 5. If there exists a pure state of S having dispersion on the observable B : S -+ 
M F ( 8 )  then the representative of B in the canonical classical extension is fuzzy. 

Proofi 
on M:(aS) ,  and 

First note that composing the effect E B . ~  on S with RM we get an effect EB.x o RM 

EB.x((Y)  = EB,X 0 RM(&) (13) 

for every 01 E 8s. Should B” := B o RM be sharp, we would have that EB,X o RM is an 
extreme effect for all X E B(E); but theorems 4 and 1 would imply that EBJ o RM is 
generated by the characteristic function xy for some measurable subset Y of as. Hence, 
by equation (13), EB,x(u) = 0 , l  for any X E B ( s )  and (Y E 8s; this means that the pure 
states of S would be dispersion-free on B ,  thus contradicting the hypothesis of the theorem. 
0 

Theorem 4, together with the comments made in section 2 about the classical case, 
ensures that the poset [OS, es] of the effects of the original S-based model can be embedded 
in the quasi-Boolean algebra of the regular effects of the extended classical model based 
on M:(aS). However, when the premise of theorem 5 is met (as is the case for quantum 
mechanics) the possibility of embedding [Os, es] in the Boolean algebra of the regular 
extremal effects on M:(aS)  is ruled out. Of course this possibility is ruled out even when 
we restrict to the set a[Os, es] of the extremal effects, which plays the role of the ‘quantum 
logic’ of the S-based model whenever the latter has a quantum nature [6,9]. 
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5. The extension of quantum theory 

We now come to the specific case of quantum mechanics, based on the convex set SQ of 
all density operators on a complex separable Hilbert space ‘H, the set aSQ of the extremal 
elements consisting of the one-dimensional projectors. 

The conditions for the existence of the canonical classical extension discussed in the 
previous section, more specifically the conditions of theorem 3, are met by SQ. Thus we 
come to our main conclusion that there exists an affine surjective map 

RM : M:(aSQ) + SQ (14) 

which carries the canonical classical extension of quantum mechanics. 
The decomposition of a density operator into a convex combination of one-dimensional 

projectors (the pure states of SQ) is never unique: there are infinitely many distinct convex 
combinations of pure states that give rise to the same density operator (see, e.g., [ZO]). So, 
the coarse graining on M:(aSp) associated with the reduction map (14) corresponds to 
collapsing the family of all convex combinations of pure states that correspond to the same 
density operator into that density operator. 

Besides the quoted papers of Misra [2] and Holevo [5], the use of probability measures 
on asp to represent states was considered by Ghirardi, Rimini;and Weber [21] and Hudson 
[22,23]. Recently it was applied by Amann [24J as a basis for his ‘individual-stochastic 
interpretation’ of quantum mechanics. 

Going through the results of sections 3 and 4 we can summarize a number of facts 
about observables. For short we call Q-observables the ones on SQ; as seen in section 2 
they include the usual observables described by self-adjoint operators on X, as well as the 
unsharp ones associated with Pov-measures. We call C-representatives their counterparts 
in the canonical classical extension, namely their representatives on M:(BSQ). 

(1) The statistical distribution of results of measurements of a Q-observable is the 
same as the statistical distribution of results of measurements of its C-representative; in 
short, BSQ = B M T ( a S p )  for any Q-observable B. In particular, a Q-observable and its 
C-representative have the same spectrum and the same eigenvalues; moreover, expectation 
values and variances are unchanged going from Q-observables to their C-representatives. 

(2) Whenever two Q-observables obey an uncertainty relation their C-representatives 
do the same (with the same uncertainty limit). 

(3) The C-representatives of the Q-observables are regular and fuzzy. 
(4) Any two Q-observables have comeasurable C-representatives. 
To visualize some aspects of the canonical classical extension of quantum mechanics, 

consider the description of the spin-;. The convex set SQ can be viewed as a unit sphere 
in three dimensions (see, e.g., [20]): any two diametrically opposed points on the surface 
represent the ‘up’ and ‘down‘ polarization (pure) states along some direction in ordinary 
space. The non-unique decomposability of non-pure states into pure states is geometrically 
apparent: for instance, the mixture with equal weights of the ‘spin-up’ and ‘spin-down’ states 
along a given axis represents the unpolarized state, but the choice of the axis is completely 
arbitrary, so that the (degenerate) density operator of the unpolarized state admits infinitely 
many convex decompositions into pure states. 

Consider the usual spin observables uy, uz alongthe y. z axes. As depicted in figure 1, 
both U? and uz map the sphere of states into the probability measures on a two-element set, 
hence into a segment whose extremal points are the Dirac measures corresponding to the 
two eigenvalues -1 and 1. The spin-up state in the .(e, 4) direction, whose wavefunction 
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can be written as 
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corresponds to the weights 

(15) 
1 f sin e sin@ i f c o s e  

2 '  
w(uy =*I )  = 2 w(uz = f l )  = 

I I 
:A A'; 

?&({I, -1)) 
U" = -1 U" = 1 

Figure 1. The sphere represents the set of polarization states of a spin-; system. The mapping 
of the sphere associated with ay (resp., a=) can be viewed as the orthogonal projection on the 
d = i i z  plane followed by the onhogonal projection on the segment AA' (resp., B B ) .  

The range of any joint observable of the C-representatives of uy and a, would then be 
the set of the probability measures on a four element set, namely the tetrahedron whose 
vertices correspond to the ordered pairs (1,l). (-1. l), (1, -I), (-1, -1) of values of uy,uz 
(or of their C-representatives). The weights in (15) provide, for pure states, the two marginal 
distributions of any joint distribution, which then become forced to take the form 

w(uY = I, uZ = I) = "(e, 4) 

where U(@, 4) is any function that makes non-negative the four weights above. Different 
choices of v ( 8 , @ )  correspond to different joint distributions which, however, have the same 
marginal distributions. Each choice of u ( e , @ )  determines a correspondence between the 
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surface of the sphere of figure 1, that represents the set of pure states, and a surface inside 
the tetrahedron that we denote s(0, @): in figure 2 we give an example for a particular choice 
of U(€!,$). One can check~that for all possible choices of v(e, @) the surface s(0, @) does 
not lie in a plane. We can now visualize what a joint observable of the C-representatives 
of uy and U, should be: it is an affine mapping from the set of all the probability measures 
on the surface of the sphere of figure 1 onto the convex hull of s(0,@). Notice that the 
probability measures concentrated, with equal weights, at diametrically opposed points on 
the sphere are now mapped by this affine mapping into the points of a segment inside 
the convex hull of s(0, $), as shown in figure 2. This is why it is impossible to have a 
joint observable of uy and 0; in standard quantum mechanics, where the above probability 
measures are all represented by the same density operator, i.e. by the centre of the sphere. 
An &ne mapping of the sphere onto the convex hull of s(e, 4) is thus impossible. 

3 1 )  

Figure 1. The curved surface inside the tetrahedron is the image of lhe surface of the sphere 
of figure I under thejoint observable of the C-representatives of r s y  and cz, for the particular 
choiceo(B,+) = a(l+cosB)(I+sinBsin+). Thesegmento'oistheimageofthemixtures, 
with equal weights, of opposed points on the surface of the sphere. 

Let us now leave the spin-i example and return to more general aspects. 
The fact that quantum theory admits the canonical classical extension has, we believe, 

an interest on the epistemological side. This classical extension adds  something to the 
debate on possible connections and compatibilities between quantum theory and classical 
frameworks. Notice that, in view of the remark at the end of section 4, no conflict can arise 
 with^ the known 'no-go', theorems for hidden variable models of quantum mechanics which 
prevent the embedding of the projection lattice of a Hilbert space into Boolean algebras 
[ZO]. Our classical extension of quantum theory calls into play a richer set of states-not 
just SQ but all the probability measures on 8SQ-and a richer set of observables, only some 
of them being C-representatives of Q-observables. In this sense we might pictorially say 
that the canonical classical extension is somewhat like a hidden observable generalization 
of quantum theory. 
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From the physical point of view, it is precisely this richer set of observables that 
makes an interesting challenge. The familiar Q-observables do not separate different convex 
combinations of pure states that correspond to the same density operator: in other words 
there are distinct preparation procedures of statistical ensembles that are not distinguished 
by the Q-observables. On the contrary, the new observables entering the canonical classical 
extension do that separation. 

One might wonder what kind of hypothetical phenomenon could effect the above 
separation of convex combinations of pure states. It was observed in [22] that multiparticle 
correlations might do this. Let us here outline that nonlinear phenomena appear to be natural 
candidates for that job, as pointed out years ago by Mielnik [25] and further discussed in 
[26]. (For recent surveys on possible nonlinear generalizations of quantum mechanics see, 
e.g., [27,28].) 

Let us again take the spin-$ example to give a hint in that direction. Suppose that a 
particle in the (pure) state @(e, g5) interacts with some device and let f ( 0 , @ )  be the response 
function. The fact, characteristic of standard quantum mechanics, that the unpolarized state 
can be thought of as a mixture with equal weights of the spin-up states along the opposed 
directions (0,g5) and ( x  - 0, x + @), together with the complete arbitrariness of the choice 
(0, @), can be translated by saying that the response function must meet the constraint [ZO] 

f(0, @) + f ( x  - 0, IT + @) = constant. (16) 

Now, if f (0 ,@) has the common form 

f ( e ,  4) = w, A @ )  

for some self-adjoint matrix with elements a+ i, j = 1,2, we immediately get 

and the constraint (16) is obviously met. But if A in (17) is replaced by some nonlinear 
(i.e. depending on @(e,@)) operator then we have clearly to expect that the response function 
will escape the constraint (16), which precisely corresponds to the separation of different 
mixtures of pure states associated to the same density operator. 

As a parallel example, consider the polarization states of a photon whose quantum 
description corresponds'to the Poincar6 sphere. The non-unique decomposability of quantum 
mixtures is again self-evident from the shape ofthat convex set. Let us focus attention on the 
linear polarization states, i.e. on the equatorial section of the Poincarb sphere: the mixture 
with equal weights of two pure states polarized along perpendicular directions, say along 
0 and ;IT + 0, leaves no memory of,@ in any measurement associated with the ordinary 
(quantum) observables. Hence the response function f ( 0 )  of any device interacting with a 
photon linearly polarized along 0 must meet the constraint [20] 

(18) 

A hypothetical (nonlinear) device transforming, as an example, the polarization along 0 
into the one along 20 would then give rise, if followed by a linear polarimeter, to a 
response function f(0) = cos'(20) that escapes the constraint (18). In other words, such 
a hypothetical device would separate different mixing procedures of pure states that are 
collapsed into the same density operator by the quantum description. 

Besides the hints advanced by the above hypothetical examples, it is worth noting 
that the observables described by nonlinear operators find an appropriate representation as 
observables related to the corresponding canonical classical extension [26]. 

f ( 0 )  + f($r + 0) = constant. 
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